A novel fully synthetic dual targeted EphA2/4-1BB Bicycle® peptide induces tumor localized 4-1BB agonism

Sajithai Battula1, Punit Gopahare1, Marriana Kleyman, Gemma Mudde2, Jessica Kublin, Eric Haines, Elizabeth Repash, Jun Ma3, Tom L. Stephen3, Julia Kristensen3, Liuqiong Chen4, Kristen E. Hurvitz5, Paul Bezwoda2, Johanna Lehenderczyk2, Kevin McDonnell2, and Nicholas Keen1

1Bicycle Therapeutics, Lexington, MA, USA; 2Bicycle Therapeutics, Cambridge, UK

ABSTRACT

4-1BB (CD137) is a member of TNF superfamily involved in the stimulation of several immune cells. Agonism of this receptor in a preclinical immunotherapy model with rationally designed bispecific Bicycle® peptides showed efficiency in clinical models with limited success in clinical trials due to hepatotoxicity. Bicycle® represent a new therapeutic modality – fully synthetic, constrained bicyclic peptides. We recently showed that Bicycle® CD137 agonists with rapid clearance, minimal liver exposure induce CD137 mediated anti-tumor activity while avoiding liver toxicity. Moreover, our platform allows for rapidly developing a portfolio of fully synthetic tumor-targeted immune cell agonists (TICAs).

EphA2/CD137 TICA demonstrates tumor-specific signaling in in vitro and in vivo models. Immunopharmacological characterization of EphA2 in a tumor antigen which is overexpressed in human cancers and correlates with poor prognosis.

Here, we present preclinical data demonstrating the potent immunomodulatory activity of EphA2/CD137 TICAs which engage EphA2 and CD137 simultaneously with high affinity resulting in potent potentiating effect. EphA2/CD137 TICAs potentiate tumor target dependent cytokine secretion in immune co-culture experiments and promote caspase activity in T cell mediated killing assays.

In vivo testing of EphA2/CD137 TICAs in humanized tumor bearing HT29 xenografts show an increased percentage of CD8+ cells in tumor but not in the circulation, suggesting a local tumor specific stimulation of T cells without systemic CD137 agonism. Interestingly, EphA2/CD137 TICA showed a robust anti-tumor activity in a syngeneic MC38 mouse model.

**Together, these studies define the unique ability of EphA2/CD137 dual targeting Bicycle® to precisely and potently stimulate target-specific immune cells in tumors without systemic immune stimulation in very promissing and provides us rationale for developing first-in-class Bicycle® to target EphA2+ cancers.”

RESULTS

Figure 1A: EphA2/CD137 TICAs demonstrate cytokine secretion and caspase activity in a target-dependent manner.

Figure 1B: EphA2/CD137 TICAs promote cytokine secretion and caspase activity in a target-dependent manner.

Figure 2: EphA2/CD137 TICAs promote tumor killing.

Figure 3: EphA2/CD137 TICAs promote cytokine secretion and caspase activity in a target-dependent manner. (A) PBMCs from healthy donors were co-cultured with tumor cells (SI) in presence of anti-CD3, anti-CD28 and anti-CD137 antibodies. Supernatant was harvested after 24h, analyzed by ELISA and intracellular cytokine staining for IFNγ, TNFα, IL-17, IL-23, IL-2, IL-10 and IL-6. (B) EphA2/CD137 TICAs induced A549 tumor cell killing by CD3-stimulated PBMCs. Cell killing was measured by quantitating Caspase 3/7 activity in cancer cells by Incucyte (error bars = SD).

Figure 4: EphA2/CD137 TICAs promote synergistic effect in co-culture assays in a target-dependent manner.

Figure 5: EphA2/CD137 TICAs demonstrate tumor localization and potent anti-tumor activity.

Figure 6: EphA2/CD137 TICAs demonstrate tumor localization and potent anti-tumor activity.

CONCLUSIONS

We have successfully synthesized EphA2/CD137 TICAs that engage EphA2 and CD137 simultaneously with high affinity resulting in promiscuous potency.

EphA2/CD137 Bicycle® are highly potent in both reporter cell and primary T-cell assays in a tumor-targeted manner.

EphA2/CD137 Bicycle® show robust anti-tumor activity in HT29/PBMC engraftment model and syngeneic MC38 mouse model.

PK/PD modeling predicts a potential for weekly dosing of these molecules in the clinic.

The Bicycle® platform enables a discovery strategy to synthesize monoclonal antibodies with human IgG Fc-properties across wide range of tumor targets as well as other immune cell receptors.

1Bicycle Therapeutics Limited 4 Hartwell Plaza, Lexington, MA 02421 www.bicycletherapeutics.com