BT7480, a novel Nectin-4 dependent agonist of the immune cell costimulatory receptor CD137

Nicholas Keen, M.A., PhD.
Chief Scientific Officer, Bicycle Therapeutics, Lexington MA
Nicholas Keen

I have the following financial relationships to disclose:
Consultant for: HotSpot Therapeutics Inc, Kymera Therapeutics Inc.
Employee of: Bicycle Therapeutics

-and-

I will not discuss off label use and/or investigational use in my presentation.
Forward looking statements

This presentation may contain forward-looking statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words such as “aims,” “anticipates,” “believes,” “could,” “estimates,” “expects,” “forecasts,” “goal,” “intends,” “may” “plans,” “possible,” “potential,” “seeks,” “will,” and variations of these words or similar expressions that are intended to identify forward-looking statements. All statements other than statements of historical facts contained in this presentation are forward-looking statements, including statements regarding our future financial or business performance, conditions, plans, prospects, trends or strategies and other financial and business matters; our current and prospective product candidates, planned clinical trials and preclinical activities, current and prospective collaborations and the timing and success of our development of our anticipated product candidates.

Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, our development plans, our preclinical and clinical results, our plans to initiate clinical trials and the designs of the planned trials and other future conditions, and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, risks related to the ongoing COVID-19 pandemic, the risk that any one or more of our product candidates will not be successfully developed or commercialized, the risk of cessation or delay of any ongoing or planned clinical trials, the risk that we may not realize the intended benefits of our technology, including that we may not identify and develop additional product candidates for our pipeline, the risk that we may not maintain our current collaborations or enter into new collaborations in the future, or that we may not realize the intended benefits of these collaborations, the risk that our product candidates or procedures in connection with the administration thereof will not have the safety or efficacy profile that we anticipate, the risk that prior results will not be replicated or will not continue in ongoing or future studies or trials, the risk that we will be unable to obtain and maintain regulatory approval for our product candidates, the risk that the size and potential of the market for our product candidates will not materialize as expected, risks associated with our dependence on third-parties, risks relating to our capital requirements and needs for additional financing, and risks relating to our ability to obtain and maintain intellectual property protection for our product candidates. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled “Risk Factors” in our Annual Report on Form 10-K, filed with the Securities and Exchange Commission (SEC) on March 11, 2021 as well as in other filings Bicycle may make with the SEC in the future, as well as discussions of potential risks, uncertainties and other important factors in our subsequent filings with the Securities and Exchange Commission. New risks and uncertainties may emerge from time to time, and it is not possible to predict all risks and uncertainties. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.
Bicycles are a new therapeutic modality for addressing intractable challenges

- **Short linear peptide**
- **Scaffold**
- Chemical cyclization with scaffold

- **Chemical synthesis**
- **Rapid tissue distribution**
- **Complex protein targets druggable**
- **Route of elimination**

<table>
<thead>
<tr>
<th></th>
<th>Chemical synthesis</th>
<th>Rapid tissue distribution</th>
<th>Complex protein targets druggable</th>
<th>Route of elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small molecules</td>
<td>+++</td>
<td>+++</td>
<td>---</td>
<td>Liver</td>
</tr>
<tr>
<td>Antibodies</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>Liver</td>
</tr>
<tr>
<td>Bicycles</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>Renal</td>
</tr>
</tbody>
</table>

Built-in tolerance to conjugation
- Generalizable approach
- Versatility to adopt multiple formats

Phage-based screening platform
- Nobel Prize-winning technology
- Rapid selection from >10^{17} potential candidates
Bicycle® platform delivers a toolkit of building blocks to create novel oncology medicines

Bicycle Phage Display - Discovery
- Linear peptide
- Bicycle DNA
- Protein III
- Gene III
- Chemical modification with scaffold
- Diverse Bicycle phage libraries (>10^15)
- Loop sizes
- Bicycle scaffolds

Peptide & Medicinal Chemistry
- Natural Amino Acids
- Non-natural Amino Acids
- Optimize Bicycle monomers
- Tumor Targeting and Effector Bicycles
- Build and Optimize Therapeutic Bicycles
- Payloads and Linkers

Bicycle Medicines
- Monomeric Bicycles
- Targeted Drug Conjugates
- Targeted/Multi-specific Bicycles

CD137 (4-1BB) is an immune co-stimulatory receptor with high therapeutic potential in cancer

- CD137 is expressed on activated immune cells – signaling enhances function and survival, prevents anergy
- CD137 ligand expressed by APCs provides a co-stimulatory signal to T cells and NK cells – potential in antitumor immunity
- Sustained activation leads to exhaustion and AICD – transient, localized action may be the optimal approach
- Urelumab – anti-CD137 agonist mAb – some clinical activity but liver toxicity precluded development

- Many agents in development now – **none yet meet fully design goals dictated by the biology**
 - Activity localized to the tumor – potentiate immune activation
 - Rapid onset of action and controllable duration of action
 - No Fc interactions to avoid liver toxicity

Chin (2018) Nat. Comm. 9, 4679
Soderstrom (2018) Atherosclerosis 272, 66
TICA™: Tumor Targeted Immune Cell Agonists join immune cell and tumor targeting *Bicycles*

- Activated immune cell
 - CD
 - TM
 - CRD 4
 - CRD 3
 - CRD 2
 - CRD 1
- CD137
- CD137L
- Antigen presenting cell

Activation induced by clustering of **CD137** by trimeric **CD137L**

CD137 Engaging Bicycle®

Linker

Tumor Targeting Bicycle

Tumor Target/CD137 TICA

CD137 clustering induced by tumor antigen
Nectin-4 – targeting and scaffolding for a CD137 Bicycle®

- Cell adhesion molecule, widely expressed during development, restricted in adult normal tissue
- Highly expressed in a wide range of solid tumor indications including breast, bladder, head & neck, esophageal, ovarian, and lung cancer\(^1,2\)
- Nectin-4 and CD137 co-expressed in variety of human tumors

<table>
<thead>
<tr>
<th>Indication</th>
<th>Total cores (N)</th>
<th>% Nectin-4+ (H-score > 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast (all)</td>
<td>225</td>
<td>80</td>
</tr>
<tr>
<td>TNBC</td>
<td>141</td>
<td>86</td>
</tr>
<tr>
<td>Bladder</td>
<td>142</td>
<td>78</td>
</tr>
<tr>
<td>Esophagus</td>
<td>140</td>
<td>55</td>
</tr>
<tr>
<td>Head & Neck</td>
<td>69</td>
<td>58</td>
</tr>
<tr>
<td>Lung</td>
<td>157</td>
<td>39</td>
</tr>
<tr>
<td>Ovarian</td>
<td>89</td>
<td>45</td>
</tr>
<tr>
<td>Pancreas</td>
<td>96</td>
<td>19</td>
</tr>
<tr>
<td>Stomach</td>
<td>131</td>
<td>4</td>
</tr>
</tbody>
</table>

2 Campbell, et al. AACR. 2021. POSTER #1197
CD137 and Nectin-4 *Bicycles*: discovery and optimization by phage display and chemistry

CD137

- $K_D = 1400$ nM
- $K_D = 67$ nM
- $K_D = 5$ nM

Phage Hits

- ID sequence families
- Define initial pharmacophores

Phage Optimized

- Focused libraries
- Optimize natural AAs
- Scaffold/Loop symmetry

Chemistry Optimized

- Non natural amino acids
- Tune affinity and stability
- Balanced phys chem properties

Nectin-4

- $K_D = 508$ nM
- $K_D = 80$ nM
- $K_D = 1$ nM
Bicycle® scaffold nucleates secondary structure with CD137 and provides a pharmacophore.

CD137 Bicycle binds to epitope common to CD137L.

Bicycle loop 2 forms third strand of β-sheet with CD137.

Loop 2 antiparallel β-sheet H-bonding.

Triazinane ring of TATA scaffold forms close packing interaction with Met101.
Bicycles are highly modular and TICAs are built and optimized using medicinal chemistry.

CD137 & Nectin-4 Bicycles

Linkers

Diverse Nectin-4/CD137 TICAs

Tunable formats = Tunable properties

Reporter cell assay data for 30 Nectin-4/CD137 TICAs

CD137 Jurkat reporter cells in co-culture with HT1376
BT7480 is a fully synthetic, heterotrimeric conjugate with 1 Nectin-4 and 2 CD137 Bicycles

BT7480 selected as lead TICA™ candidate

Structure of BT7480
MW = 7.2 kDa
Bicycle® TICAs are ~30x smaller than other targeted agonists

Bicycle
TICA™
BT7480

Anti-FAP
IgG-CD137L fusion
Roche
RG7826

Anti-Her2 IgG-
anti-CD137 anticalin fusion
Pieris PRS-343

7.2kDa
~185kDa
~190kDa
BT7480: a Nectin-4/CD137 TICA™ clinical development candidate

<table>
<thead>
<tr>
<th>Assay</th>
<th>Target Value</th>
<th>BT7480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Immune Cell Assay (EC₅₀)¹</td>
<td>< 2 nM</td>
<td>0.37±0.23 nM (IL-2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.22±0.12 nM (IFNγ)</td>
</tr>
<tr>
<td>CD137 dependent activity</td>
<td>Require CD137</td>
<td>CD137 dependent</td>
</tr>
<tr>
<td>Tumor antigen dependent activity</td>
<td>Require Nectin-4</td>
<td>Nectin-4 dependent</td>
</tr>
<tr>
<td>Immune target selectivity (Vs OX40/CD40)</td>
<td>>10 fold</td>
<td>Selective²</td>
</tr>
<tr>
<td>Tumor target selectivity (Vs other Nectin family members)</td>
<td>>10 fold</td>
<td>Selective</td>
</tr>
<tr>
<td>Define species selectivity (CD137)</td>
<td>Define for tox species</td>
<td>Human, NHP specific²</td>
</tr>
<tr>
<td>Define species selectivity (Nectin-4)</td>
<td>Define for tox species</td>
<td>Cross Reactive</td>
</tr>
<tr>
<td>POC in vivo activity (syngeneic or engraftment model)</td>
<td>Anti-tumor activity</td>
<td>Achieved</td>
</tr>
<tr>
<td>Rodent IV-PK (t½, h)</td>
<td>>1</td>
<td>2.6 (mouse); 4.1 (rat)</td>
</tr>
<tr>
<td>NHP IV-PK (t½, h)³</td>
<td>>5</td>
<td>5.3</td>
</tr>
<tr>
<td>Thermodynamic Solubility (mg/ml)</td>
<td>>10</td>
<td>>50</td>
</tr>
<tr>
<td>Tractable synthesis / CMC Risk</td>
<td>Low Risk</td>
<td>Synthesis scaled to >300g</td>
</tr>
<tr>
<td>Cytokine Release Syndrome Assay</td>
<td>Low Risk</td>
<td>Inactive⁴</td>
</tr>
<tr>
<td>Safety margin vs predicted human efficacious dose</td>
<td>>50-fold margin</td>
<td>Achieved</td>
</tr>
</tbody>
</table>

¹Human PBMC/HT-1376 tumor cell co-culture; average of 13 donors
²Demonstrated using biotinylated version of BT7480
³Scaling consistent with desired human profile
⁴No cytokine release in unstimulated human whole blood

MW=7213.3 Da
BT7480 binds potently and specifically to its targets

- BT7480 binds to Nectin-4 (across species) and CD137 (human, NHP) with high affinity
- BT7480 binds both targets simultaneously by SPR assay
- Exquisite selectivity, no binding seen to >5000 other membrane proteins
- No interactions seen in CYP and hERG channel inhibition assays

BT7480 only binds Nectin-4 and CD137

<table>
<thead>
<tr>
<th>Paralog screening</th>
<th>BT7480 (SPR, K_D (nM))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nectin-1</td>
<td>>200 (n=3)</td>
</tr>
<tr>
<td>Nectin-2</td>
<td>>200 (n=3)</td>
</tr>
<tr>
<td>Nectin-3</td>
<td>>200 (n=3)</td>
</tr>
<tr>
<td>Necl-1</td>
<td>>200 (n=3)</td>
</tr>
<tr>
<td>Necl-2</td>
<td>>200 (n=3)</td>
</tr>
<tr>
<td>Necl-3</td>
<td>>200 (n=3)</td>
</tr>
<tr>
<td>Necl-4</td>
<td>>5000 (n=3)</td>
</tr>
<tr>
<td>Necl-5</td>
<td>>200 (n=3)</td>
</tr>
<tr>
<td>OX40*</td>
<td>>100 (n=2)</td>
</tr>
<tr>
<td>CD40*</td>
<td>>100 (n=2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BT7480 SPR affinity (nM)</th>
<th>Human</th>
<th>Mouse</th>
<th>Rat</th>
<th>NHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nectin-4</td>
<td>5.6 ± 2.4 (n=11)</td>
<td>4.6 ± 2.1 (n=9)</td>
<td>15 ± 1 (n=6)</td>
<td>27 ± 15 (n=9)</td>
</tr>
<tr>
<td>Nectin-4 (simultaneous)</td>
<td>12 ± 2 (n=4)</td>
<td>6.7 ± 1.7 (n=3)</td>
<td>25 ± 2 (n=3)</td>
<td>28 ± 5 (n=3)</td>
</tr>
<tr>
<td>CD137</td>
<td>6.3 ± 0.7 (n=4)</td>
<td>>100 (n=2)</td>
<td>>100 (n=2)</td>
<td>18 ± 6 (n=3)</td>
</tr>
</tbody>
</table>

*Determined using biotinylated-BT7480
All data are mean ± SD and n= number of replicates

Retrogenix membrane protein array: no binding of biotinylated-BT7480 @1μM to 5,482 other proteins
BT7480 functional activity is dependent on Nectin-4 in cell-based assays *in vitro*

(-) Nectin-4

(+) Nectin-4

Human PBMC

4T1 cells ± Nectin-4

HT1376 bladder tumor cells

EC50

0.37 ± 0.23 nM (IL-2)
0.22 ± 0.12 nM (IFNγ)
BT7480 induces complete responses and memory \textit{in vivo}.

Mixed effects analysis with Tukey’s post test, days 0–17

No tumor growth in Vehicle or Isotype CTR CR animals

CRs Vehicle (n=7)

CRs Isotype CTR (n=7)

CRs with CD8 depletion (n=10)

MC38-Nectin-4 in huCD137-C57Bl/6

Day 59
PK and in vivo modeling projects target coverage and efficacy in humans with QW dosing

- Data suggest that continuous target coverage is not needed for robust efficacy
- Once weekly or less frequent dosing is predicted to be efficacious in humans

Simulation of target coverage for human dose projection

<table>
<thead>
<tr>
<th>Species</th>
<th>Terminal half-life (t₁/₂, h)</th>
<th>CLp (mL/min/kg)</th>
<th>Vss (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>2.3</td>
<td>16</td>
<td>2.3</td>
</tr>
<tr>
<td>Rat</td>
<td>3.6</td>
<td>8.5</td>
<td>1.5</td>
</tr>
<tr>
<td>NHP</td>
<td>6.2</td>
<td>4.0</td>
<td>0.88</td>
</tr>
<tr>
<td>Pred. Human</td>
<td>8.9</td>
<td>1.7</td>
<td>1.3</td>
</tr>
</tbody>
</table>
BT7480 has a unique and differentiated mechanism of action

Cytokines and Chemokines at 24 Hours

Myeloid cells activated, “shout for help”

Cytotoxic T cells migrate to and kill tumor

BT7480 binds Nectin-4 in tumor

Macrophage Score

Cell type score (linear)

Timepoint (h)

Days post BT7480 dosing

Vehicle

BT7480

NB-BCY

αCD137

Cytotoxic Cell Score

Ccl1-mRNA

Ccl17-mRNA

Ccl24-mRNA

Ccl21-mRNA

CD8+ T cells on Day 6

BT7480 is remarkably well-tolerated in preclinical species, with no evidence for liver effects.
What patients are most likely to benefit from BT7480?

Biomarker-driven approach to identifying indications that co-express Nectin-4 & CD137

Indications likely to benefit include:

>50% of breast, head & neck, ovarian and esophageal cancer patients
Summary

- BT7480 is a novel, fully synthetic, tumor antigen (Nectin-4) dependent CD137 agonist with high biological potency (ca. 300pM EC$_{50}$ in *in-vitro* assays)
- BT7480 is ca. 30x smaller than comparator biologics
- BT7480 induces robust anti-tumor responses to Nectin-4 expressing tumors in immune competent mouse models. BT7480 induces immunologic memory to those tumors
- BT7480 has a benign profile in preclinical safety evaluation with no liver effects observed
- BT7480 exhibits a unique mechanism in preclinical models
- Tumors that may benefit include >50% of breast, head & neck, ovarian and esophageal cancer patients
- BT7480 will be entering human trials in 2021
End