

ABSTRACT

Bicycles are fully synthetic constrained peptides with antibody-like affinities that target selectively, readily penetrate tumor tissue, have relatively short half-lives, and can be chemically linked together to generate multifunctional molecules. BT7480 is a *Bicycle* TICA[®] being developed as a first-in-class CD137 therapeutic for the treatment of human cancers associated with Nectin-4 expression and is currently being investigated in an ongoing Phase I/II clinical trial. Monitoring target engagement for a given therapeutic can be a key factor in recommending the Phase II dose. While flow cytometry-based receptor occupancy (RO) assays are commonly used to monitor target engagement in the clinic, a CD137-specific RO assay presents several important challenges that have historically hampered monitoring RO in the clinic, including the dynamic expression of CD137 on unstimulated and stimulated T cells, the low frequency of CD137+ cells in human blood, and limited reagents to confidently detect CD137+ cells in the presence of CD137-targeting drugs. To address these challenges, a fit-for-purpose, 14-plex flow cytometry panel was developed that incorporates a fluorescently labelled CD137-specific binding *Bicycle®*. This *Bicycle®* was shown to directly compete with a *Bicycle* TICA[®] for binding to CD137, but not with a fluorescently labelled anti-CD137 antibody, thereby enabling simultaneous detection of various CD137+ immune cell types, as well as receptor occupancy by BT7480 in a single blood sample.

INTRODUCTION

METHODS

Using a proprietary CD137 *Bicycle*[®] dimer, a 14-plexed flow cytometry assay was developed to simultaneously quantify the presence of CD137+ immune cells, and receptor occupancy by BT7480 in a single blood sample. For assay development, human whole blood samples were preincubated in the presence of increasing concentrations of CD137 Bicycle TICA® compound followed by flow cytometry. Stimulated blood samples were generated by treating samples in the presence of CD3/CD28 Dynabeads for 72hrs prior to incubation with compound and panel testing. Data are reported as % RO and calculated using the following formula:

Development of a CD137 receptor occupancy assay to support the phase I/II study of BT7480, a *Bicycle* tumor-targeted immune cell agonist[®] (*Bicycle* TICA[®])

Heather Cohen¹, Cara Bray¹, Drasti Kanakia¹, Johanna Lahdenranta¹, Punit Upadhyaya¹, Kristen Hurov¹, Julia Kristensson², Chintan Jobaliya³, Greg Bannish³, Adam Cotty³, Kevin McDonnell¹, Phil Brandish¹, Sandra Hirschberg², Sebastien Hazard¹, Dominic Smethurst², Nicholas Keen¹, Stephen J Blakemore¹ ¹Bicycle Therapeutics, Lexington, MA; ²Bicycle Therapeutics, Cambridge, UK; ³FlowMetric Inc., Doylestown, PA

RESULTS

Figure 3: A) Fluorescently labelled CD137 Bicycle dimer was shown to directly compete with various concentrations of CD137 Bicycle TICA® for binding to CD137 on human CD137+ T cells (filled/solid lines), but not CD137- T cells (open/dashed lines). B) Gating strategy to detect CD137+ immune cells in human whole blood samples as well as CD137+ CD137 Bicycle dimer+ cells (stimulated CPT donor representative sample shown). The FMX panel excluded the CD137 antibody and used a fluorescently labeled non-binding *Bicycle* dimer in place of the CD137 *Bicycle* dimer.

Panel performance testing across clinically-relevant sample matrices

Figure 4: Panel performance was tested across blood-based sample matrices routinely used in the clinic including EDTA and Cyto-Chex® blood collection tubes and Cell Preparation Tubes (CPT) (n=3 each). B) Whole blood samples were stained with the 14-plex custom panel and analyzed. CPT were selected as the optimal sample matrix based on sample viability and highest detection of CD137 antibody+ and CD137 Bicycle+ cells.

Bicycle CD137 receptor occupancy assay is functional in human whole blood samples

Figure 5: Ex vivo RO assessments in anti-CD3 stimulated (left) and unstimulated (right) healthy human blood collected in CPT demonstrated dose-dependent detection of CD137 RO by CD137 Bicycle TICA® (n=5, representative donor sample pretreated with 10nM CD137 Bicycle TICA® shown, following gating strategy shown in Figure 3B).

Bicycle CD137 receptor occupancy flow cytometry panel development

Unstimulated healthy blood

RESULTS

Bicycle CD137 receptor occupancy assay is suitable for clinical testing purposes

Figure 6: A) The optimized method and dose-dependent detection of CD137+ cells and RO by CD137 Bicycle TICA® was verified in stimulated and unstimulated healthy blood, and unstimulated lung cancer patient whole blood samples collected in CPT (n=5, representative donor shown). B) Method optimization resulted in consistent detection of CD137 RO by CD137 Bicycle TICA® and >1000 CD137+ cells with >70% viability in unstimulated healthy and cancer blood samples (n=5, pretreated with 10nM CD137 Bicycle TICA® shown).

CD137 *Bicycle* dimer[®] detects CD137+ cells that are largely memory T cells in unstimulated human blood

Figure 7: A) Gating strategy to detect and quantify immune cell subsets of interest circulating in blood including T cells, NK cells, and myeloid cells. B) Phenotypic analysis following gating shown in Figures 3B and 7A of immune cells that are CD137+ and that bind the CD137 Bicycle® dimer in unstimulated blood samples (n=10, representative donor shown).

CONCLUSIONS

- This study represents the first report of a clinic-ready CD137 RO assay
- first-in-human clinical trial²

REFERENCES

- 1. Hurov, K., et al. Journal for Immunotherapy of Cancer.
- 2. NCT05163041
- 3. Challita-Eid. et al. Cancer Research. 2016.
- 4. Campbell, C. et al. AACR Annual Meeting 2021. Poster #1197.
- 5. Keen, N. AACR. 2021.

Results demonstrate the first clinical flow cytometry assay using fluorescently labelled Bicycle® reagents

Successful assay development supports the utility of the *Bicycle*® CD137 RO assay to monitor target engagement in the BT7480

Bicycle Therapeutics, Inc. 4 Hartwell Place Lexington, MA 02421-3122, USA T. +1 617-945-8155

Bicycle Therapeutics plc Portway Building Granta Park Cambridge CB21 6GS, UK T. +44 (0)1223 261503

