Bicycle

NKp46 engaging Bicycle NK-TICA[™] drives tumor targeted cytotoxicity

Abstract Number

0000

ABSTRACT

Natural killer (NK) cells are immune cells that can detect and eliminate tumor cells and bridge innate to adaptive immune responses. Bicycles are small (~2kDa), chemically synthetic, structurally constrained peptides discovered *via* phage display and optimized using medicinal chemistry approaches. We identified Bicycles that bind specifically to a key activating receptor, NKp46, combined them with tumor targeting Bicycles to generate NK-TICA[™] and evaluated these molecules *in vitro*. Sandra Uhlenbroich², Alexandra Rezvaya¹, Fay J. Dufort¹, Christopher J. Leitheiser¹, Kathleen Ho¹, Tucker Ezell¹, Liuhong Chen², Philip E. Brandish¹, Michael Skynner², Kevin McDonnell¹, Nicholas Keen¹, ¹Bicycle Therapeutics US, ²Bicycle Therapeutics UK. Contact: sandra.uhlenbroich@bicycletx.com

METHODS

Phage Hits

 ID sequence families

NKp46 *Bicycles* : discovery and optimization by phage display and chemistry

Focused libraries

Optimize natural

NK-TICA[™] enhances NK cytokine production in the presence of EphA2+ cell lines

INTRODUCTION

We developed a novel, fully synthetic tumor binding and NKp46 binding NK-TICA[™] (natural killer-tumor-targeted immune cell agonist) molecule that is capable of inducing NK cell activation in the presence of tumor. As an immunotherapeutic agent, Bicycle's NK-TICA[™] molecules are positioned to engage NK cells in a tumor antigen dependent manner to kill and drive adaptive immunity in solid tumors.

Figure 1: Program hypothesis: Catalysis of adaptive immunity by NK cells has potential to enable tumor rejection and enhance the action of established therapeutics such as targeted toxins and immune checkpoint inhibitors.

ABOUT BICYCLES

Bicycles are a class of small (~2kDa) peptide-based therapeutic modality (Fig 2 A.). Peptides are selected through a phage display screening process (Fig 2 B. [1] Winter et al). The unique attributes of *Bicycles* include:

► High selectivity to target and tunable affinity

Non natural amino acids

Tuned affinity and stability

Figure 3: Phage display screening identified high affinity, selective binders to NKp46. For proof-of-concept studies, NKp46 binding *Bicycles* were conjugated with an EphA2, PD-L1 and MT-1 binding NK-TICA[™] *Bicycle*[®].

RESULTS

NK-TICA[™] selectively binds NKp46 by SPR and on primary NK cells

NK-TICA™ drive NKp46 tumor killing with multiple tumor antigens: EphA2, MT-1 and PD-L1

Figure 7: NK cells were co-cultured with EphA2, MT-1 or PD-L1 expressing cells in the presence of NKp46 NK-TICA[™] with the varying tumor binding arms. ADCC-capable anti-EGFR antibody was used as positive control.

- Large binding footprint to biologically relevant 3D structures
- Readily conjugated to toxin payload, fluorochrome, other Bicycles, radionuclides, biotin/affinity tags etc.
- Compatible with multiple routes of administration, including IV, SQ, and inhalation
- Fully synthetic and scalable manufacturing

A. *Bicycles* relative to other therapeutic compounds

B. Phage display screening process and multi-valent Bicycles

NKp46 binding BCY

Non-binding NKp46 BCY

Figure 4: Binding of NKp46 Bicycle[®] monomers was measured by SPR (Figure 4A) and by flow cytometry (Figure 4B).

The AF647-fluorescently labelled NKp46 Bicycle® bound only to PBMC purified NK cells.

Non-binding NK-TICA[™] control (D-amino acids ablating affinity to the target) demonstrated no binding above background in either CD56+ NK (Figure 4B) or T lymphocyte populations (data not shown).

NK-TICA[™] enhances NK killing across multiple EphA2+ cell lines

Images created with BioRender.com (2022)

- ◆ NKp46 NK-TICA™
- NKp46 binding, EphA2 non-binding NK-TICA™
- OKp46 non-binding, EphA2 non-binding NK-TICA™
- ·▼ ADCC anti-EGFR antibody
- ♦ No NK-TICA™

2000

Modeling of NK-TICA[™] in complex with NKp46 and EphA2 in comparison to a bispecific antibody

Figure 8: Graphical model demonstrating the approximate size of an NK-TICA[™] and relative spacing when bound simultaneously to tumor target EphA2 and NKp46. Shown for comparison is the size and relative bound spacing for a bispecific antibody (IgG) binding EphA2 and NKp46 at the same epitopes. (PDB: 6rw2, 6iap, 1hzh, Gauthier et al. 2019).

CONCLUSION

- Building on progress made with CD137 Bicycle[®] TICAs, the Bicycle platform has now been successfully applied to build prototype NK cell engagers.
- ► NK-TICA[™] drive NK cell-mediated tumor cell killing and cytokine production *in vitro* and as such have the potential to catalyze the development of durable anti-tumor immunity in tumor types not well served by current therapies.

REFERENCES

Winter et al. Nature Chem Bio (2009)
Upadhyaya et al. J. Immunother. (2021)
Lani et al. PEGS-Boston (2017)
Gauthier et al. Cell (2019)
Wang et al. Oncogene (2021)

Bicycle Therapeutics, Inc.

35 Cambridgepark <u>Drive</u>, <u>Suite</u> 350 Cambridge, MA 02140 USA T. +1 617-945-8155

BicycleTx Limited

Portway Building Granta Park, Cambridge CB21 6GS, UK T. +44 (0)1223 261503

Company number 11036101. Registered in England.

Figure 2 A. *Bicycles* relative to other therapeutic compounds, B. Phage display screening process and multi-valent *Bicycles*.

Figure 5: NK cells specifically kill EphA2+ cell line HT1080 in the presence of EphA2 binding Bicycle[®] NK-TICA[™] (EC₅₀~16pM).

Without EphA2 binding, the *NK*-*TICAs* NKp46 non-binder/EphA2 non-binder and NKp46 binder/EphA2 non-binder did not enhance tumor killing compared to no NK-TICA[™] control. ADCC-capable anti-EGFR antibody was used as positive control.