Bicycles - a modality for Tumor-Targeted Immune Cell Agonism

Sandra Uhlenbroich
Associate Director, Discovery

Antibody Engineering & Therapeutics
Amsterdam, June 2023
Forward-looking statement

This presentation may contain forward-looking statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words such as “aims,” “anticipates,” “believes,” “could,” “estimates,” “expects,” “forecasts,” “goal,” “intends,” “may” “plans,” “possible,” “potential,” “seeks,” “will,” and variations of these words or similar expressions that are intended to identify forward-looking statements. All statements other than statements of historical facts contained in this presentation are forward-looking statements, including statements regarding: our future business performance, conditions, plans, prospects, trends or strategies and other business matters; our current and prospective product candidates, planned clinical trials and preclinical activities, current and prospective collaborations and the timing and success of our development of our anticipated product candidates.

Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, our development plans, our preclinical and clinical results, our plans to initiate clinical trials and the designs of the planned trials and other future conditions, and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that any one or more of our product candidates will not be successfully developed or commercialized, the risk of cessation or delay of any ongoing or planned clinical trials, the risk that we may not realize the intended benefits of our technology, including that we may not identify and develop additional product candidates for our pipeline, the risk that our product candidates or procedures in connection with the administration thereof will not have the safety or efficacy profile that we anticipate, the risk that prior results will not be replicated or will not continue in ongoing or future studies or trials and the risk that we will be unable to obtain and maintain regulatory approval for our product candidates. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled “Risk Factors” in our Quarterly Report on Form 10-Q, filed with the Securities and Exchange Commission on May 4, 2023, as well as in other filings we may make with the SEC in the future, as well as discussions of potential risks, uncertainties and other important factors in our subsequent filings with the Securities and Exchange Commission. New risks and uncertainties may emerge from time to time, and it is not possible to predict all risks and uncertainties. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.

This presentation does not constitute an offer to sell or a solicitation of an offer to buy securities, nor shall there be any sale of any securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction.
Bicycle Therapeutics

- Clinical-stage biopharma company pioneering Bicycles, a new differentiated class of innovative medicines (Founded by Sir Greg Winter & Prof. Christian Heinis)
- Based in Cambridge (UK) & Boston (USA), 236 FTEs (Dec 31 2022)

<table>
<thead>
<tr>
<th>Target / Product</th>
<th>Partner/Sponsor</th>
<th>Indication</th>
<th>Modality</th>
<th>Preclinical</th>
<th>IND-enabling</th>
<th>Phase I</th>
<th>Phase II/ Expansion</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT528 (EphA2)</td>
<td></td>
<td>Oncology</td>
<td>Bicycle® Toxin Conjugate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT8009 (Nectin-4)</td>
<td></td>
<td>Oncology</td>
<td>Bicycle® Toxin Conjugate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT7480 (Nectin-4/CD137)</td>
<td></td>
<td>Immuno-oncology</td>
<td>Bicycle TICA™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT7455 (EphA2/CD137)</td>
<td></td>
<td>Immuno-oncology</td>
<td>Bicycle TICA™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undisclosed</td>
<td></td>
<td>Radiopharmaceutical</td>
<td>Bicycle® Radio Conjugate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partnered Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THR-149 (Kallikrein inhibitor)</td>
<td></td>
<td>Ophthalmology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT1718 (MT1-MMP)</td>
<td></td>
<td>Oncology</td>
<td>Bicycle® Toxin Conjugate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT7401 (multivalent CD137 system agonist)</td>
<td></td>
<td>Immuno-oncology</td>
<td>Bicycle® Toxin Conjugate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undisclosed</td>
<td></td>
<td>Immuno-oncology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novel anti-infectives</td>
<td></td>
<td>Anti-infectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novel CNS targets</td>
<td></td>
<td>CNS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novel neuromuscular targets</td>
<td></td>
<td>Neuromuscular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undisclosed</td>
<td></td>
<td>Radiopharmaceutical</td>
<td>Bicycle® Radio Conjugate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undisclosed</td>
<td></td>
<td>Radiopharmaceutical</td>
<td>Bicycle® Radio Conjugate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bicycle® - a unique & disruptive therapeutic modality

- **High affinity and selectivity in a small, fully synthetic format**
- **Biologically relevant tertiary structures**
 - EphA2
 - CAIX
 - PD-L1
 - Loops
 - Hairpins (β, γ)
 - Helices ($\alpha, 3_{10}$)
- **Favorable drug-like properties**
 - Small size (1.5-2 kDa)
 - High specificity
 - Chemical synthesis (NCEs)
 - Rapid tissue penetration
 - Complex protein targets druggable
 - Multiple routes of administration
 - Renal route of elimination
 - Not immunogenic
Bicycle® platform delivers a toolkit of building blocks to create novel medicines

Bicycle® Phage Display - Discovery
- Linear peptide
- Diverse Bicycle® phage libraries (>10^20)
- Natural Amino Acids

Peptide & Medicinal Chemistry
- Optimize Bicycle® monomers
- Build and Optimize Therapeutic Bicycles
- Easy conjugation of Linkers and Payloads
- Non-Natural Amino Acids

Potential Bicycle® Medicines
- Monomeric Bicycles
- Targeted Drug Conjugates
- Targeted/Multi-specific Bicycles
- Targeted Radionuclide conjugate

Antibody Engineering & Therapeutics
Bicycle Therapeutics – creating versatile new precision-guided medicines with potential to fill major gaps in cancer therapy

- **Bicycle Toxin Conjugates® (BTCs)**
 - Precision delivery of MMAE - BT8009 & BT5528
 - Fast tissue distribution and clearance
 - Emerging clinical data

- **Bicycle Tumor-Targeted Immune Cell Agonist® (TICAs)**
 - Rapid, local and controlled immune agonism
 - Pathfinder molecule for CD137 – BT7480 in Phase I
 - Pathfinder molecule for NKp46 – preclinical stage
$Bicycle^\textregistered$ precision-guided immune activation

Immune cell receptor = CD137
CD137 (4-1BB) is an immune co-stimulatory receptor with high therapeutic potential in cancer

- Current antibody clinical trials have limited efficacy or reveal hepatic toxicity risks
- Tumor-Targeted Immune Cell Agonist (TICA) approach - meets design goal dictated by biology

Bicycle TICA®—tumor-targeted immune cell agonists delivers immune agonism to tumors
CD137 and Nectin-4 *Bicycles*: discovery and optimization by phage display and chemistry

Phage Hits
- ID sequence families
- Define initial pharmacophores

Phage Optimization
- Focused libraries
- Optimize natural AAs
- Scaffold/Loop symmetry

Chem Optimization
- Non natural amino acids
- Tuned affinity and stability
- Balanced phys. chem properties

CD137
- $K_D = 1400\, \text{nM}$
- $K_D = 67\, \text{nM}$
- $K_D = 5\, \text{nM}$

Nectin-4
- $K_D = 508\, \text{nM}$
- $K_D = 80\, \text{nM}$
- $K_D = 1\, \text{nM}$
BT7480 functional activity is dependent on Nectin-4 in cell-based assays *in vitro*
BT7480 induces complete responses and memory *in vivo*

MC38-Nectin-4 in huCD137-C57Bl/6

- **Vehicle (0/6 CRs)**
- **BT7480 5 mg/kg BIW (6/6 CRs)**
- **BT7480 1.5 mg/kg BIW (5/6 CRs)**

***p<0.001 Mixed effects analysis with Tukey’s post test, days 0–17**

Day 59

No tumor growth in Vehicle or Isotype CTR CR animals

Re-challenge

- **CRs Vehicle (n=7)**
- **CRs Isotype CTR (n=7)**
- **CRs with CD8 depletion (n=10)**
BT7480 has a unique and differentiated mechanism of action

- BT7480 leads to a tumor localized early increase in cytokine gene expression
- BT7480 leads to increase in CD8+ cell infiltration, cytotoxic and macrophage cell scores in tumor
BT7480 meets rationale design goals for a locally acting immune agonist

- CD137 agonism dependent on ligation to tumor specific antigen
- Robust anti-tumor activity with only intermittent dosing observed in vivo
- Early increase in cytokine production precedes CD8+ T cell infiltration into the tumor
- Well-tolerated in preclinical safety species
- Entered Phase I clinical trial in November 2021

Hurov K, Lahdenranta J, et al., 2021, J Immunother Cancer,
Upadhyaya, et al., 2022, J Med Chem
Bicycle® precision-guided NK cell activation

NK cell receptor = NKp46
Natural killer (NK) cells have emerged as important early drivers of the adaptive anti-tumor immune response

- Traditional understanding: NK cells kill tumor cells through direct cytotoxic mechanisms
- New science: role for NK cells in orchestration of adaptive immunity catalysis
- NK cell therapy is emerging as an important new approach to cancer
- NKp46 as NK-TICA™ target - an activating receptor specifically and constitutively expressed on NK cells

Bald et al., (2020) Nat. Immunol. 21, 835
NKp46 *Bicycles*: discovery and optimization by phage display and chemistry

NKp46

- **Phage Hits**
 - PD-L1: $K_D = 5$ nM
 - MT-1: $K_D = 15$ nM
 - EphA2: $K_D = 1.7$ nM

- **Phage Optimization**
 - $K_D = 35$ nM

- **Chem Optimization**
 - $K_D < 5$ nM

NK-TICA™
NKp46 *Bicycles* coupled to multiple antigen targets drive potent tumor cell killing

- Potential to create NK-TICA™ to address multiple solid tumor indications
NK-TICA™ enhances NK cytokine production in the presence of tumor antigen expressing cell lines

- NK cells secrete IFNγ and TNFα in the presence of NK-TICA™
- Cytokine secretion is dependent on binding to tumor antigen
NK-TICA™ enhances NK cell secretion of FLT3L

- NK-TICA™ causes FLT3L production by primary NK cells co-cultured with tumor cells
- FLT3L is a clinically validated driver of cDC1 maturation and anti-tumor responses

Additional Information:

- Allen F et al. Oncoimmun 2018
- Bottcher et al. Cell, 2018
- Holmes et al. PNAS 2014
- Zhou, Y. et al. Mol Cancer 2023
- Salmon H et al. Immunity 2016
- Barry et al. Nat Med 2018
First series of chemically synthetic, conditionally active, targeted NKp46 activators

- NK-TICA™
 - Tumor antigen-dependent NK cell engagers
 - Potent tumor cell killing
 - Potential to drive adaptive anti-tumor immunity

- NK-TICA™ have the potential to catalyze durable anti-tumor immunity in tumor types not well served by current therapies

Dufort et al., AACR 2022
Diversifying the Bicycle® platform

- **BT1718**: Target: MT1-MMP, DM1 payload, Disulfide linker (FIH 2018)
- **BT5528**: Target: EphA2, MMAE payload, Val-Cit linker (2019)
- **BT8009**: Target: Nectin-4, CD137, PEG3 linker (2020)
- **BT7480**: Targets: Nectin-4, CD137, PEG3 linker (Validation)
- **BT7455**: Targets: EphA2, CD137, PEG3 linker, Next Bicycle TICA™ scheduled for clinic (Validation)
- **NK-TICA™**: Next-generation BTCs (2021)
- **Radiopharm**: Different targets, linkers, and payloads (2021)
- **2023 and beyond**: Diverseplatforms

Antibody Engineering & Therapeutics
Thank you