ABSTRACT

BT8009, a Bicycle® Toxin Conjugate targeting Nectin-4, shows target selectivity, and efficacy in preclinical in large and small tumor models.

METHODS

Bicycle binders are identified using phage display technology. The Bicycle was synthesised by standard Fmoc solid phase synthesis and a proprietary cyclization step. Amino acid monomer libraries were made to optimise affinity, stability and hydrophilicity. The toxin-linker, valine-citrulline p-aminobenzoate (v-PABC-MMAE), was conjugated to the Bicycle to generate BT8009. Surface Plasmon Resonance (SPR) was used to confirm affinities, leading to Nectin-4 and Nectin-4-like members. High content imaging and immunocytochemistry demonstrated BT8009 binding to cell surface Nectin-4 expressing cells (MDA-MB-468). Expression of Nectin-4 in tumor cells, or patient-derived tumor samples was evaluated by FACS. Where protein was not BT8009 shown by IHA expression was provided by the SDS soluble fraction. Efficacy was evaluated using a range of xenograft models in nude mice. Xenografts were established as subcutaneous cell lines. In vivo and in vitro models were selected for “null” and increasing Nectin-4 expression. Antitumor activity was determined by tumor volume measurements following drug administration. The Bicycle phage display platform was used to identify a Nectin-4 binding parent Bicycle which was optimized for affinity and hydrophilicity. Conjugation of this Bicycle peptide, through a cleavable linker, to MMAE results in the Bicycle targeting Nectin-4. BT8009 targets Nectin-4 and releases MMAE on cleavage by the enzymes upregulated in the tumor micro-environment, in order to kill adjacent tumor cells.

RESULTS

Bicycle binders are identified using phage display technology. The Bicycle was synthesised by standard Fmoc solid phase synthesis and a proprietary cyclization step. Amino acid monomer libraries were made to optimise affinity, stability and hydrophilicity. The toxin-linker, valine-citrulline p-aminobenzoate (v-PABC-MMAE), was conjugated to the Bicycle to generate BT8009. Surface Plasmon Resonance (SPR) was used to confirm affinities, leading to Nectin-4 and Nectin-4-like members. High content imaging and immunocytochemistry demonstrated BT8009 binding to cell surface Nectin-4 expressing cells (MDA-MB-468). Expression of Nectin-4 in tumor cells, or patient-derived tumor samples was evaluated by FACS. Where protein was not BT8009 shown by IHA expression was provided by the SDS soluble fraction. Efficacy was evaluated using a range of xenograft models in nude mice. Xenografts were established as subcutaneous cell lines. In vivo and in vitro models were selected for “null” and increasing Nectin-4 expression. Antitumor activity was determined by tumor volume measurements following drug administration. The Bicycle phage display platform was used to identify a Nectin-4 binding parent Bicycle which was optimized for affinity and hydrophilicity. Conjugation of this Bicycle peptide, through a cleavable linker, to MMAE results in the Bicycle targeting Nectin-4. BT8009 targets Nectin-4 and releases MMAE on cleavage by the enzymes upregulated in the tumor micro-environment, in order to kill adjacent tumor cells.

CONCLUSION/SUMMARY

Using phage display technology a Nectin-4 binding Bicycle was identified. The Parent Bicycle was optimized for affinity, stability and hydrophilicity. BT8009 was synthesized by conjugation through an inert spacer and a cleavable linker to the toxin MMAE. The binding peptide and the Bicycle are highly selective for the target protein. The pharmacokinetic profile of BT8009 enables a rapid attainment of high tumor levels of MMAE, with corresponding reduced systemic exposure. BT8009 shows excellent efficacy in large tumor CDX and PDX models expressing Nectin-4 targets. IND enabling studies for BT8009 are ongoing.

REFERENCES

Figure 6: MMAE is retained in tumor but rapidly cleared from plasma, thereby reducing systemic exposure.

Figure 3: BT8009 binds Nectin-4 on MDA-MB-468 cells. Cells preincubated with BT8009, MMAE, non-binding BSA were washed and retained MMAE detected with anti-MMAE antibody. BT8009 remains bound to cells.

Figure 4: Efficacy tracks Nectin-4 expression determined by FACS. Models were selected for “null” and increasing expression of Nectin-4 by FACS. High expression models show excellent efficacy.

Figure 5: Efficacy tracks Nectin-4 expression as determined by IHC. BT8009 was tested on the 5 NSCLC PDX models at 3 mg/kg qw.

Figure 7: BT8009 delivers outstanding efficacy against large CDX and PDX tumors, with rapid tumor regression.

Figure 2: Identification and optimization of Nectin-4 binding Bicycle.

Figure 1: Bicycle Toxin Conjugates BT8009